Air-independent propulsion

From Bharatpedia, an open encyclopedia
Information red.svg
Scan the QR code to donate via UPI
Dear reader, We need your support to keep the flame of knowledge burning bright! Our hosting server bill is due on June 1st, and without your help, Bharatpedia faces the risk of shutdown. We've come a long way together in exploring and celebrating our rich heritage. Now, let's unite to ensure Bharatpedia continues to be a beacon of knowledge for generations to come. Every contribution, big or small, makes a difference. Together, let's preserve and share the essence of Bharat.

Thank you for being part of the Bharatpedia family!
Please scan the QR code on the right click here to donate.

0%

   

transparency: ₹0 raised out of ₹100,000 (0 supporter)




Air-independent propulsion (AIP), or air-independent power, is any marine propulsion technology that allows a non-nuclear submarine to operate without access to atmospheric oxygen (by surfacing or using a snorkel). AIP can augment or replace the diesel-electric propulsion system of non-nuclear vessels.

Modern non-nuclear submarines are potentially stealthier than nuclear submarines; although some modern submarine reactors are designed to rely on natural circulation, most naval nuclear reactors use pumps to circulate constantly the reactor coolant, generating some amount of detectable noise.[1][2] Non-nuclear submarines running on battery power or AIP, on the other hand, can be virtually silent. While nuclear-powered designs still dominate in submergence times, speed, range and deep-ocean performance, small, high-tech non-nuclear attack submarines can be highly effective in coastal operations and pose a significant threat to less-stealthy and less-maneuverable nuclear submarines.[3]

AIP is usually implemented as an auxiliary source, with the traditional diesel engine handling surface propulsion. Most such systems generate electricity, which in turn drives an electric motor for propulsion or recharges the boat's batteries. The submarine's electrical system is also used for providing "hotel services"—ventilation, lighting, heating etc.—although this consumes a small amount of power compared to that required for propulsion.

AIP can be retrofitted into existing submarine hulls by inserting an additional hull section. AIP does not normally provide the endurance or power to replace atmospheric dependent propulsion, but allows longer submergence than a conventionally propelled submarine. A typical conventional power plant provides 3 megawatts maximum, and an AIP source around 10% of that. A nuclear submarine's propulsion plant is usually much greater than 20 megawatts.

The United States Navy uses the hull classification symbol "SSP" to designate boats powered by AIP, while retaining "SSK" for classic diesel-electric attack submarines.[lower-alpha 1]

History[edit]

A replica of Ictineo II, Monturiol's pioneering submarine, in Barcelona.

In the development of the submarine, the problem of finding satisfactory forms of propulsion underwater has been persistent. The earliest submarines were man-powered with hand-cranked propellers, which quickly used up the air inside; these vessels had to move for much of the time on the surface with hatches open, or use some form of breathing tube, both inherently dangerous and resulting in a number of early accidents. Later, mechanically driven vessels used compressed air or steam, or electricity, which had to be re-charged from shore or from an on-board aerobic engine.

The earliest attempt at a fuel that would burn anaerobically was in 1867, when Spanish engineer Narciso Monturiol successfully developed a chemically powered anaerobic or air independent steam engine.[4][5]

In 1908 the Imperial Russian Navy launched the submarine Pochtovy, which used a gasoline engine fed with compressed air and exhausted under water.

These two approaches, the use of a fuel that provides energy to an open-cycle system, and the provision of oxygen to an aerobic engine in a closed cycle, characterize AIP today.

Types[edit]

Open-cycle systems[edit]

X-1 midget submarine on display at the Submarine Force Library and Museum in the United States

During World War II the German firm Walter experimented with submarines that used high-test (concentrated) hydrogen peroxide as their source of oxygen under water. These used steam turbines, employing steam heated by burning diesel fuel in the steam/oxygen atmosphere created by the decomposition of hydrogen peroxide by a potassium permanganate catalyst.

Several experimental boats were produced, though the work did not mature into any viable combat vessels. One drawback was the instability and scarcity of the fuel involved. Another was that while the system produced high underwater speeds, it was extravagant with fuel; the first boat, V-80, required 28 tons of fuel to travel 50 nautical miles (93 kilometres), and the final designs were little better.

After the war one Type XVII boat, U-1407, which had been scuttled at the end of World War II, was salvaged and recommissioned into the Royal Navy as HMS Meteorite. The British built two improved models in the late 1950s, HMS Explorer, and HMS Excalibur. Meteorite was not popular with its crews, who regarded it as dangerous and volatile; she was officially described as 75% safe.[6] The reputations of Excalibur and Explorer were little better; the boats were nicknamed Excruciater and Exploder.[7]

The Soviet Union also experimented with the technology and one experimental boat was built which utilized hydrogen peroxide in a Walter engine.

The United States also received a Type XVII boat, U-1406, and went on to begin two AIP submarine projects. Project SCB 66 developed an experimental midget submarine, Template:USS, which was launched in September 1955. It was originally powered by a hydrogen peroxide/diesel engine and battery system until an explosion of her hydrogen peroxide supply on 20 May 1957. X-1 was later converted to a diesel-electric.[8][9]

The second U.S. Navy project was of a full sized AIP submarine under SCB 67 in 1950, later SCB 67A. This submarine, designated SSX, would have one of three propulsion plants under development: a Walther open cycle hydrogen peroxide plant (termed Alton), a liquid oxygen steam plant (Ellis), and an AIP gas turbine (Wolverine). By late 1951 the Navy realized that while the competing nuclear designs were heavier due to shielding, they were more compact than the three AIP plants: the SSX would be longer than the SSN by nearly 40 feet. The SSN would likely be quieter and less complicated than the AIP technology of this time. By 1952 the nuclear reactors were so far along in development it appeared that the SSX submarine would not be needed as a stopgap. The project was cancelled on 26 October 1953.[10]

The USSR and the UK, the only other countries known to be experimenting with the technology at that time, also abandoned it when the US developed the nuclear reactor small enough for submarine propulsion. Other nations, including Germany and Sweden, would later recommence AIP development.

It was retained for propelling torpedoes by the British and the Soviet Union, although hastily abandoned by the former following the HMS Sidon tragedy. Both this and the loss of the Russian submarine Kursk were due to accidents involving hydrogen peroxide propelled torpedoes.

Closed-cycle diesel engines[edit]

This technology uses a submarine diesel engine which can be operated conventionally on the surface, but which can also be provided with oxidant, usually stored as liquid oxygen, when submerged. Since the metal of an engine would burn in pure oxygen, the oxygen is usually diluted with recycled exhaust gas. Argon replaces exhaust gas when the engine is started.

In the late 1930s the Soviet Union experimented with closed-cycle engines, and a number of small M-class vessels were built using the REDO system, but none were completed before the German invasion in 1941.

During World War II the German Kriegsmarine experimented with such a system as an alternative to the Walter peroxide system, designing variants of their Type XVII U-boat and their Type XXVIIB Seehund midget submarine, the Type XVIIK and Type XXVIIK respectively, though neither was completed before the war's end.

After the war the USSR developed the small 650-ton -class submarine, of which thirty were built between 1953 and 1956. These had three diesel engines—two were conventional and one was closed cycle using liquid oxygen.

In the Soviet system, called a "single propulsion system", oxygen was added after the exhaust gases had been filtered through a lime-based chemical absorbent. The submarine could also run its diesel using a snorkel. The Quebec had three drive shafts: a 32D 900 bhp (670 kW) diesel on the centre shaft and two M-50P 700 bhp (520 kW) diesels on the outer shafts. In addition a 100 hp (75 kW) "creep" motor was coupled to the centre shaft. The boat could be run at slow speed using the centreline diesel only.[11]

Because liquid oxygen cannot be stored indefinitely, these boats could not operate far from a base. It was dangerous; at least seven submarines suffered explosions, and one of these, M-256, sank following an explosion and fire. They were sometimes nicknamed cigarette lighters.[12] The last submarine using this technology was scrapped in the early 1970s.

The German Navy's former Type 205 submarine U-1 (launched 1967) was fitted with an experimental 3,000 hp (2,200 kW) unit.

Closed-cycle steam turbines[edit]

The French MESMA (Module d'Energie Sous-Marin Autonome) system is offered by French shipyard DCNS. MESMA is available for the Agosta 90B and -class submarines. It is essentially a modified version of their nuclear propulsion system with heat generated by ethanol and oxygen. Specifically, a conventional steam turbine power plant is powered by steam generated from the combustion of ethanol and stored oxygen at a pressure of 60 atmospheres. This pressure-firing allows exhaust carbon dioxide to be expelled overboard at any depth without an exhaust compressor.

Each MESMA system costs around $50–60 million. As installed on the Scorpènes, it requires adding an 8.3-metre (27 ft), 305-tonne hull section to the submarine, and results in a submarine able to operate for greater than 21 days underwater, depending on variables such as speed.[13][14]

An article in Undersea Warfare Magazine notes that: "although MESMA can provide higher output power than the other alternatives, its inherent efficiency is the lowest of the four AIP candidates, and its rate of oxygen consumption is correspondingly higher."[14]

Stirling cycle engines[edit]

HSwMS Gotland in San Diego

The Swedish shipbuilder Kockums constructed three -class submarines for the Swedish Navy that are fitted with an auxiliary Stirling engine that burns liquid oxygen and diesel fuel to drive 75 kW electrical generators for either propulsion or charging batteries. The endurance of the 1,500-tonne boats is around 14 days at 5 kn (5.8 mph; 9.3 km/h).

Kockums refurbished and upgraded the Swedish -class submarines with a Stirling AIP plugin section. Two (Södermanland and Östergötland) are in service in Sweden as the class, and two others are in service in Singapore as the class (Archer and Swordsman).[citation needed]

Kockums also delivered Stirling engines to Japan. Ten Japanese submarines were equipped with Stirling engines. The first submarine in the class, [[]], was launched on 5 December 2007 and delivered to the navy in March 2009. The eleventh of the class is the first one that is equipped with lithium-ion batteries without a Stirling engine.[15]

The new Swedish -class submarine has the Stirling AIP system as its main energy source. The submerged endurance will be more than 18 days at 5 knots using AIP.[citation needed]

Fuel cells[edit]

Type 212 submarine with fuel cell propulsion of the German Navy in dock

Siemens has developed a 30–50 kilowatt fuel cell unit, a device that converts the chemical energy from a fuel and oxidiser into electricity. Fuel cells differ from batteries in that they require a continuous source of fuel (such as hydrogen) and oxygen, which are carried in the vessel in pressurized tanks, to sustain the chemical reaction. Nine of these units are incorporated into Howaldtswerke Deutsche Werft AG's 1,830 t submarine U-31, lead ship for the Type 212A of the German Navy. The other boats of this class and HDW's AIP equipped export submarines ( class, Type 209 mod and Type 214) use two 120 kW (160 hp) modules, also from Siemens.[16]

After the success of Howaldtswerke Deutsche Werft AG in its export activities, several builders developed fuel-cell auxiliary units for submarines, but as of 2008 no other shipyard has a contract for a submarine so equipped.[citation needed]

The AIP implemented on the class of the Spanish Navy is based on a bioethanol-processor (provided by Hynergreen from Abengoa, SA) consisting of a reaction chamber and several intermediate Coprox reactors, that transform the BioEtOH into high purity hydrogen. The output feeds a series of fuel cells from Collins Aerospace (which also supplied fuel cells for the Space Shuttle).

The reformer is fed with bioethanol as fuel, and oxygen (stored as a liquid in a high pressure cryogenic tank), generating hydrogen as a sub-product. The produced hydrogen and more oxygen is fed to the fuel cells.[17]

The Naval Materials Research Laboratory of Indian Defence Research and Development Organisation in collaboration with Larsen & Toubro and Thermax has developed a 270 kilowatt phosphoric acid fuel cell (PAFC) to power the-class submarines, which are based on the [[]] design. All six Kalvari class submarines will be retrofitted with AIP during their first upgrade. It produces electricity by reacting with hydrogen generated from sodium borohydride and stored oxygen with phosphoric acid acting as an electrolyte.[18][19][20]

DRDO AIP (air independent propulsion) model for Kalvari-class submarine

The Portuguese Navy -class submarines are also equipped with fuel cells.

Nuclear power[edit]

Air-independent propulsion is a term normally used in the context of improving the performance of conventionally propelled submarines. However, as an auxiliary power supply, nuclear power falls into the technical definition of AIP. For example, a proposal to use a small 200-kilowatt reactor for auxiliary power—styled by AECL as a "nuclear battery"—could improve the under-ice capability of Canadian submarines.[21][22]

Nuclear reactors have been used since the 1950s to power submarines. The first such submarine was USS Nautilus commissioned in 1954. Today, China, France, India, Russia, the United Kingdom and the United States are the only countries to have built and operated nuclear-powered submarines successfully.

Non-nuclear AIP submarines[edit]

As of 2017, some 10 nations are building AIP submarines with almost 20 nations operating AIP based submarines:

Country AIP type Builders Submarines with AIP Operators Numbers with AIP, and notes
 Germany Fuel cell Siemens-ThyssenKrupp class  Israel 5 active / 1 under construction[23][24]
Type 209-1400mod  South Korea

 Greece
 Egypt

1 confirmed retrofit with AIP,[25] up to 9 additional class possibly retrofit.[26][27][28][29]
Type 212  Germany
 Italy
 Norway (planned)
10 active / 8 more planned[30][31]

Norway plans to procure four submarines based on the Type 212 by 2025.[32]

Type 214  South Korea
 Greece
 Portugal
 Turkey
13 active / 2 under construction / 8 more planned[33][34]

3 Turkish orders are being built at Gölcük Naval Shipyard. 3 more are planned.

Type 218  Singapore 2 under construction / 2 more planned, with first delivery expected in 2020.[35][36][37]
 Sweden Stirling AIP Kockums class  Sweden 3 active[38]
class  Singapore 2 active (retrofit of the class)[39]
class  Sweden 2 active (retrofit of the class)
-class submarine  Sweden 2 planned
 Japan Stirling AIP Kawasaki-Kockums class  Japan 1 retrofit: Asashio.[40]
class  Japan 12 active
 France
MESMA Naval Group Agosta 90B  Pakistan 3 in service
[[]]  Chile
 Brazil (planned)
6 active (of 7 completed) / 4 under construction / 3 more planned
 Spain Fuel cell Navantia class  Spain 4 under construction / 4 planned
 India Fuel cell Defence Research and Development Organisation class  India All six class will be retrofitted with AIP during their first upgrade[41]
 Russia Fuel cell Rubin Design Bureau
NIISET Krylov
Project 677 Лада (Lada)  Russia Rumoured status: no confirmation that systems are operational on any Russian submarines
Project 1650 Амур (Amur) None
 People's Republic of China Stirling AIP 711 Research Institute-CSHGC Type 041 (Yuan class)  People's Republic of China 15 completed and 5 under construction
Type 032 (Qing class)  People's Republic of China Experimental submarine
 South Korea Fuel cell Hyundai Heavy Industries
Daewoo Shipbuilding & Marine Engineering
Dosan Ahn Changho-class submarine  South Korea 1 completed / 2 under construction / 6 more planned

References[edit]

  1. "S8G (Submarine, 8 for 8th generation and G for General Electric)". GlobalSecurity.org. Alexandria VA. Retrieved 20 September 2021.
  2. Polmar, Norman (2004). "10: Second Generation Nuclear Submarines". Cold War submarines : the design and construction of U.S. and Soviet submarines (1st ed.). Washington, D.C.: Potomac Books. ISBN 1574885308.
  3. "Tomorrow's Submarines: the Non-Nuclear Option". DefenseWatch. Archived from the original on 7 July 2012. Retrieved 2 July 2012.
  4. Cargill Hall, R. (1986). History of rocketry and astronautics: proceedings of the third through the sixth History Symposia of the International Academy of Astronautics, Volumen 1. NASA conference publication. American Astronautical Society by Univelt, p. 85. ISBN 0-87703-260-2
  5. A steam powered submarine: the Ictíneo Low-tech Magazine, 24 August 2008
  6. Paterson, Lawrence (2008). Dönitz's last gamble : the inshore U-boat campaign, 1944-45. Barnsley, UK: Pen & Sword. ISBN 9781844157143.
  7. Miller, David (2002). "Explorer - class". The Illustrated Directory of Submarines of the World. St. Paul, MN: MBI Publishing. pp. 326–327. ISBN 0760313458.
  8. "SS X-1". Historic Naval Ships Association. Archived from the original on 18 August 2013. Retrieved 24 February 2014.
  9. Friedman (1994), pp. 217-222.
  10. Friedman (1994), pp. 47-48.
  11. Preston, Anthony (1998). Submarine Warfare. Brown Books. p. 100. ISBN 1-897884-41-9.
  12. Cold War Submarines: The Design and Construction of U.S. and Soviet Submarines By Norman Polmar, Kenneth J. Moore pg 44
  13. "DCNS Group" (PDF). DCNS Group. Archived from the original (PDF) on 15 November 2008. Retrieved 26 July 2015.
  14. 14.0 14.1 "India Looks to Modify Scorpene Subs With MESMA AIP Propulsion". Defense Industry Daily. 1 March 2006. Retrieved 26 July 2015.
  15. "Japanese Submarines Exchange Stirling Engines for Lithium-ion Batteries". SWZ|Maritime.
  16. "U212 / U214 Submarines - Naval Technology". Retrieved 26 July 2015.
  17. Navy, Spanish. "Armada Española - Ministerio de Defensa - Gobierno de España". armada.defensa.gob.es.
  18. "Indian-built Scorpene to carry critical DRDO system". The Hindu. 3 November 2014. Retrieved 22 October 2015.
  19. "Key indigenous technology for submarines crosses important milestone: DRDO". The Hindu. Special Correspondent. 9 March 2021. ISSN 0971-751X. Retrieved 11 March 2021.{{cite news}}: CS1 maint: others (link)
  20. Dar, Younis (10 March 2021). "Success With New Propulsion Technology Will Greatly Benefit Indian Submarines". EurAsian Times. Retrieved 11 March 2021.
  21. Julie H. Ferguson (10 March 2014). Through a Canadian Periscope: The Story of the Canadian Submarine Service. Dundurn. p. 363. ISBN 978-1-4597-1056-6.
  22. Kozier, K. S.; Rosinger, H. E. (1988). "The Nuclear Battery: A Solid-State, Passively Cooled Reactor for the Generation of Electricity and/or High-Grade Steam Heat" (PDF). Pinawa, Manitoba: Whiteshell Nuclear Research Establishment, Atomic Energy of Canada Limited.
  23. Eshel, Tamir (6 May 2011). "Israel to Receive a Third Enhanced Dolphin Submarine". Defense Update. Archived from the original on 2 July 2011. Retrieved 25 July 2011.
  24. "Sixth Submarine: "The Contract Continues"". israeldefense.com. 31 October 2011. Archived from the original on 21 October 2013. Retrieved 25 December 2014.
  25. "The Odyssey: Greece's U-214 Submarine Order". Defense Industry Daily. 8 October 2014. Retrieved 19 December 2014.
  26. ARG. "Chang Bogo Class Patrol Submarine - Military-Today.com". www.military-today.com.
  27. "Defense & Security Intelligence & Analysis: IHS Jane's - IHS". articles.janes.com.
  28. Kim, Duk-Ki (2000). Naval Strategy in Northeast Asia: Geo-strategic Goals, Policies and Prospects. Routledge. p. 30. ISBN 0-7146-4966-X.
  29. Meconis, Charles; Wallace (2000). East Asian Naval Weapons Acquisitions in the 1990s: Causes, Consequences, and Responses. Praeger. p. 229. ISBN 0-275-96251-2.
  30. "Classe Todaro page at Marina Militare website". Retrieved 27 April 2010.
  31. Holger Naaf: Die Brennstoffzelle auf U 212 A (PDF, German). Bundesanstalt für Wasserbau, Wehrtechnische Dienststelle für Schiffe und Marinewaffen Eckernförde, 23. September 2008.
  32. "German TKMS will build Norway's submarines". navaltoday.com. 3 February 2017. Retrieved 5 May 2017.
  33. Dr. Albert E. Hammerschmidt(Siemens AG, Erlangen), Fuel Cell Propulsion of Submarines (PDF), archived from the original (PDF) on 16 July 2011
  34. New Type Submarine (AIP) Project Archived 22 July 2011 at the Wayback Machine, Undersecretariat for Defence Industries of the Republic of Turkey
  35. "Singapore Ministry of Defence Signs Contract with TKMS for two new Type 218SG submarines".
  36. "Singapore's Type-218SG – Forerunner of a new Submarine Class? - Defense Update:". defense-update.com.
  37. Editorial, Reuters. "UPDATE 1-ThyssenKrupp wins submarine order from Singapore". {{cite web}}: |first= has generic name (help)
  38. "The Gotland class submarine - submerged several weeks". Kockums. Archived from the original on 25 April 2011. Retrieved 6 April 2008.
  39. "Kockums receives Singapore order to two submarines". Kockums. Archived from the original on 6 June 2011. Retrieved 19 November 2005.
  40. Sutton. "World survey of AIP submarines". HISutton.com. Retrieved 22 November 2016.
  41. "Scorpene submarine programme makes progress". The Hindu. Retrieved 2 February 2018.

Notes[edit]

  1. United States Navy Glossary of Naval Ship Terms (GNST). SSI is sometimes used, but SSP has been declared the preferred term by the USN. SSK (ASW Submarine) as a designator for classic diesel-electric submarines was retired by the USN in the 1950s, but continues to be used colloquially by the USN and formally by navies of the British Commonwealth and corporations such as Jane's Information Group.

Sources[edit]

  • Friedman, Norman (1994). U.S. Submarines Since 1945: An Illustrated Design History. Annapolis, Maryland: United States Naval Institute. ISBN 1-55750-260-9.

Further reading[edit]