Computer science: Difference between revisions

356 bytes added ,  11 April 2021
Theoretical computer science
(add info)
(Theoretical computer science)
Line 85: Line 85:
As a discipline, computer science spans a range of topics from theoretical studies of algorithms and the limits of computation to the practical issues of implementing computing systems in hardware and software.<ref name="CSAB1997">{{cite web|publisher=Computing Sciences Accreditation Board|title=Computer Science as a Profession|url=http://www.csab.org/comp_sci_profession.html |date=May 28, 1997| access-date=23 May 2010 |archive-url = https://web.archive.org/web/20080617030847/http://www.csab.org/comp_sci_profession.html |archive-date = June 17, 2008}}</ref><ref>{{cite book |author=Committee on the Fundamentals of Computer Science: Challenges and Opportunities, National Research Council |title=Computer Science: Reflections on the Field, Reflections from the Field|url=http://www.nap.edu/catalog.php?record_id=11106#toc|publisher=National Academies Press|isbn=978-0-309-09301-9|year=2004}}</ref>
As a discipline, computer science spans a range of topics from theoretical studies of algorithms and the limits of computation to the practical issues of implementing computing systems in hardware and software.<ref name="CSAB1997">{{cite web|publisher=Computing Sciences Accreditation Board|title=Computer Science as a Profession|url=http://www.csab.org/comp_sci_profession.html |date=May 28, 1997| access-date=23 May 2010 |archive-url = https://web.archive.org/web/20080617030847/http://www.csab.org/comp_sci_profession.html |archive-date = June 17, 2008}}</ref><ref>{{cite book |author=Committee on the Fundamentals of Computer Science: Challenges and Opportunities, National Research Council |title=Computer Science: Reflections on the Field, Reflections from the Field|url=http://www.nap.edu/catalog.php?record_id=11106#toc|publisher=National Academies Press|isbn=978-0-309-09301-9|year=2004}}</ref>
[[CSAB (professional organization)|CSAB]], formerly called Computing Sciences Accreditation Board—which is made up of representatives of the [[Association for Computing Machinery]] (ACM), and the [[IEEE Computer Society]] (IEEE CS)<ref>{{cite web |url=http://www.csab.org/ |title=CSAB Leading Computer Education |publisher=CSAB |date=August 3, 2011 |access-date=19 November 2011}}</ref>—identifies four areas that it considers crucial to the discipline of computer science: ''theory of computation'', ''algorithms and data structures'', ''programming methodology and languages'', and ''computer elements and architecture''. In addition to these four areas, CSAB also identifies fields such as software engineering, artificial intelligence, computer networking and communication, database systems, parallel computation, distributed computation, human–computer interaction, computer graphics, operating systems, and numerical and [[symbolic computation]] as being important areas of computer science.<ref name="CSAB1997"/>
[[CSAB (professional organization)|CSAB]], formerly called Computing Sciences Accreditation Board—which is made up of representatives of the [[Association for Computing Machinery]] (ACM), and the [[IEEE Computer Society]] (IEEE CS)<ref>{{cite web |url=http://www.csab.org/ |title=CSAB Leading Computer Education |publisher=CSAB |date=August 3, 2011 |access-date=19 November 2011}}</ref>—identifies four areas that it considers crucial to the discipline of computer science: ''theory of computation'', ''algorithms and data structures'', ''programming methodology and languages'', and ''computer elements and architecture''. In addition to these four areas, CSAB also identifies fields such as software engineering, artificial intelligence, computer networking and communication, database systems, parallel computation, distributed computation, human–computer interaction, computer graphics, operating systems, and numerical and [[symbolic computation]] as being important areas of computer science.<ref name="CSAB1997"/>
===Theoretical computer science===
{{main|Theoretical computer science}}
''Theoretical Computer Science'' is mathematical and abstract in spirit, but it derives its motivation from the practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies.