Computer science: Difference between revisions

1,538 bytes added ,  11 April 2021
add info
(Programming language theory and formal methods)
(add info)
Line 168: Line 168:
{{main|Programming language theory|Formal methods}}
{{main|Programming language theory|Formal methods}}
Programming language theory is a branch of computer science that deals with the design, implementation, analysis, characterization, and classification of [[programming language]]s and their individual [[Programming language#Elements|features]]. It falls within the discipline of computer science, both depending on and affecting [[mathematics]], software engineering, and [[linguistics]]. It is an active research area, with numerous dedicated academic journals.
Programming language theory is a branch of computer science that deals with the design, implementation, analysis, characterization, and classification of [[programming language]]s and their individual [[Programming language#Elements|features]]. It falls within the discipline of computer science, both depending on and affecting [[mathematics]], software engineering, and [[linguistics]]. It is an active research area, with numerous dedicated academic journals.
Formal methods are a particular kind of [[Mathematics|mathematically]] based technique for the [[formal specification|specification]], development and [[formal verification|verification]] of software and [[computer hardware|hardware]] systems.<ref>Phillip A. Laplante, 2010. Encyclopedia of Software Engineering Three-Volume Set (Print). CRC Press. p. 309. {{ISBN|978-1-351-24926-3}}.</ref> The use of formal methods for software and hardware design is motivated by the expectation that, as in other engineering disciplines, performing appropriate mathematical analysis can contribute to the reliability and robustness of a design. They form an important theoretical underpinning for software engineering, especially where safety or security is involved. Formal methods are a useful adjunct to software testing since they help avoid errors and can also give a framework for testing. For industrial use, tool support is required. However, the high cost of using formal methods means that they are usually only used in the development of high-integrity and [[life-critical system]]s, where safety or [[computer security|security]] is of utmost importance. Formal methods are best described as the application of a fairly broad variety of [[theoretical computer science]] fundamentals, in particular [[logic in computer science|logic]] calculi, [[formal language]]s, [[automata theory]], and [[program semantics]], but also [[type systems]] and [[algebraic data types]] to problems in software and hardware specification and verification.


=== Answering the question ===
=== Answering the question ===