File:Stock-indices-2020crash+recovery.svg

From Bharatpedia, an open encyclopedia

Original file(SVG file, nominally 504 × 378 pixels, file size: 177 KB)

This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.

Summary

Description
English: Stock index chart of 2020 with stock market crash
Date
Source Own work
Author Geek3
SVG development
InfoField
 
The SVG code is valid.
 
This plot was created with Matplotlib.
Source code
InfoField

Python code

#!/usr/bin/python3
# -*- coding: utf8 -*-

import csv
import datetime
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np

class Stock:
    def __init__(self, name):
        self.data = self.get_csv(name)
        self.convert_types()
        self.filter_date(datetime.datetime(2020, 1, 1), datetime.datetime(2020, 12, 31))
    
    def get_csv(self, name):
        try:
            with open(name, 'r' ) as f:
                reader = csv.DictReader(f)
                return [line for line in reader]
        except FileNotFoundError as ex:
            print(ex)
            print('get data from', 'https://finance.yahoo.com/quote/DAX/history?p=DAX')
            exit()
    
    def convert_types(self):
        for il, l in enumerate(self.data):
            for k in l.keys():
                try:
                    if k == 'Date':
                        l[k] = datetime.datetime.strptime(l[k], '%Y-%m-%d')
                    else:
                        l[k] = float(l[k])
                except Exception:
                    del self.data[il]
    
    def filter_date(self, date, date2=None):
        self.data = [i for i in self.data if i['Date'] >= date]
        if date2 is not None:
            self.data = [i for i in self.data if i['Date'] <= date2]
    
    def get_dates(self):
        return [l['Date'] for l in self.data]
    
    def get_values(self):
        return np.array([float(l['Close']) for l in self.data])
    
    def get_values_norm(self):
        v = self.get_values()
        #vmean = np.mean([v for i, v in enumerate(v) if self.data[i]['Date'].month == 1])
        #return v / vmean
        # v / max(v)
        return v / max([v for i, v in enumerate(v) if self.data[i]['Date'].month < 4])


# data is found on finance.yahoo.com
data_spx = Stock('^GSPC.csv')
data_DJI = Stock('^DJI.csv')
data_stoxx50e = Stock('^STOXX50E.csv')
data_DAX = Stock('^GDAXI.csv')

plt.figure(figsize=[5.6, 4.2])
ax = plt.gca()
ax.set_prop_cycle(color=['#0072bd', '#d95319', '#edb120', '#7e2f8e'])

plt.plot(data_spx.get_dates(), 100*data_spx.get_values_norm(), 'o-', ms=3, label='S&P 500')
plt.plot(data_DJI.get_dates(), 100*data_DJI.get_values_norm(), 'o-', ms=3, label='Dow Jones')
plt.plot(data_stoxx50e.get_dates(), 100*data_stoxx50e.get_values_norm(), 'o-', ms=3, label='EURO STOXX 50')
plt.plot(data_DAX.get_dates(), 100*data_DAX.get_values_norm(), 'o-', ms=3, label='DAX')

plt.xlim(datetime.datetime.strptime('2019-12-24', '%Y-%m-%d'),
         datetime.datetime.strptime('2021-01-08', '%Y-%m-%d'))
ax.tick_params(axis='x', which='minor', pad=6)
ax.xaxis.set_major_locator(mpl.dates.MonthLocator())
ax.xaxis.set_major_formatter(mpl.ticker.NullFormatter())
ax.xaxis.set_minor_formatter(mpl.dates.DateFormatter("%m"))
ax.xaxis.set_minor_locator(mpl.dates.MonthLocator(bymonthday=16))
ax.yaxis.set_major_formatter(mpl.ticker.FormatStrFormatter('%.0f%%'))

for tick in ax.xaxis.get_minor_ticks():
    tick.tick1line.set_markersize(0)
    tick.tick2line.set_markersize(0)
    tick.label1.set_horizontalalignment('center')

plt.xlabel('date (month 2020)')
plt.ylabel('value relative to 2020 pre-crash maximum')
plt.grid(True)
plt.legend(loc='lower right', framealpha=1, edgecolor='k', borderpad=0.7, borderaxespad=0.6)
plt.tight_layout()
plt.savefig('stock-indices-2020crash+recovery.svg')

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

1 January 2021

image/svg+xml

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current20:45, 1 January 2021Thumbnail for version as of 20:45, 1 January 2021504 × 378 (177 KB)wikimediacommons>Geek3Uploaded own work with UploadWizard

The following page uses this file: